Driving breakthroughs in health, industry and the environment

From water purification and the development of new drug delivery methods to understanding the fundamental properties of metal complexes, chemistry has a huge impact on our society. As one of the fundamental sciences, chemistry underpins many of the most important aspects of our world. What we eat, the technology we useand how we treat illness all occur as a result of chemical reactions.

Molecules are the building blocks of all matter. By studying matterwe can predict and explain how molecular interactions affect the composition, structureand physical properties of substances. Understanding these chemical processes allows them to be modified into innovative solutions and technologies to help address the global challenges facing our society.

Associated schools, institutes & centres


From sustainable water quality technologies to the promotion of human and environmental health, our cutting-edge chemical research has contributed to the development of new technologies including:

  • novel water treatment and desalination technologies, mining wastewater treatment processesand water sterilisation processes. Several of our water purification projects are approaching the large pilot-scale level. A recently commissioned report by Arcadis stated that our novel desalination process could be up to 30% more efficient than reverse osmosis.
  • the synthesis and study of novel functionalised supramolecular structures such as cucurbit[n]urils that can be used for biological, environmental, pharmaceutical (including drug delivery technologies) and industrial applications.
  • the synthesis and study of redox-active and luminescent transition metal complexes for applications in biological systems, sensor systemsand light-activated molecular devices.
  • coating materials designed to prevent ember attack during bushfires expected to have worldwide application.
  • propeller cavitation technology that is expected to revolutionise shipping transport.

Competitive advantage

New state-of-the-art laboratories with excellent analytical research infrastructure including NMR, mass spectrometry, GC-MSand fluorometers.

  • Close working relationships and funding from industry partners to develop various novel water treatment processes based on several of our patented ideas.
  • Strong and on-going collaborations with academic colleagues in Australia and around the world including the Australian National University, the University of Sydney, Lund University (Sweden)and Cambridge University (England).
  • Considerable external funding from government sources (e.g. Australian Research Council) and industry including $400,000 from Australian Pork Ltd and $600,000 from Breakthrough Technologies.
  • Strong publication record in international journals.

Successful applications

Successful adoption of some of our research by industry through international patents and the setting up of “spin-off” companies. This includes several of our recent water purification technologies currently under consideration for large-scale pilot studies with a view to large scale industrial development and adoption.


    • Pashley et al. ‘Resin for desalination and process of regeneration.’ WO 2020/118371 A1. Published 18 June 2020.

    • Pashley et al. ‘Sterilization method.’ WO 2019/104383 A1. Published 6 June 2019.

    • Pashley et al. ‘.’ WO 2018/071985 A1. Published 26 April 2018.

    • Rui Wei, Richard M. Pashley. ‘.’ Desalination. 479, 114329 (2020).

    • Anis-Ul-Haque KM; Woodward CE; Day AI; Wallace L, 2020, '',Inorganic Chemistry, vol. 59, pp. 3942 – 3953.

    • Al Rawashdeh L; Cronin MP; Woodward CE; Day AI; Wallace L, 2016, 'I',Inorganic Chemistry, vol. 55, pp. 6759 – 6769.

    • Dhiman R; Pen S; Chandrakumar PK;FrankcombeTJ; Day AI, 2020, '',Chemical Communications, vol. 56, pp. 2529 – 2537.8.

    • Chandrakumar PK; Dhiman R; Woodward CE;IranmaneshH; Beves JE; Day AI, 2019, '',Journal ofOrganic Chemistry, vol. 84, pp. 3826 – 3831.

Study with us

Our teaching is informed by our research, particularly in our second and third-year courses. This provides both interesting and important real-world applications that highlight the theoretical aspects of our courses and the development of a variety of student-oriented research projects at all undergraduate and postgraduate levels.

Our researchers

 Anthony Day
opens in a new window
Honours & CDF Coordinator Lynne Wallace
Honours & CDF Coordinator
opens in a new window